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OPTIMIZATION OF CONTROL PARAMETERS OF FLOWS 
WITH TRANSITION THROUGH THE SPEED OF SOUND* 

F.A. SLOBODKINA and E.K. IANOVSKAIA 

The problem of optimization of parameters controlling the transonic flow inchannels 
in the presence of external effects is studied with the application of the method 
of Lagrange's multipliers. The gasdynamic flow is defined by quasi-one dimensional 
equations. Among various modes steady flows are selected with continuous transition 
through the speed of sound from subsonic velocity to supersonic, and vice versa. 
The selection of steady solutions with passing through the speed of soundis carried 
out on the basis of criteria derived in /1,2/. Solution of the problem of optimiza- 
tion of transonic flows in WED-generator and in WI-ID-accelerator is given at small 
Reynolds numbers and in a constant current plasmotron with length-wise blown arc. 

1. We consider the flow of gas in a quasi-one-dimensional approximation in a finite 
length 1 (O<s< I) channel of a varying cross section y(s) in the presence ofexternaleffects. 
We write the equations of continuity, and motion and energy of unsteady quasi-one-dimensional 
flow of perfect gas in the form 

+ pu -$- + fl (PT u, P? VJ = 0 

Lz = -$+ug+ -+ + + f2 (P? u, P7 uh-) = 0 

Ls E -g+ u$- +YPs + ypu 5 + f3(P,& PTU,) =0 
t 4i 

!I=x 
h=Y-H- 

Y---i P' 
k= 1,2,...,m 

(1.11 

where p, u, p, h are the density, velocity, pressure, and enthalpy of the medium, respectively, 
y is the ratio of specific heats; functions f,, f2,f3 define the external effects (mass addi- 

tion and removal, various energy forms, etc.), y(z) and vb (5) are the system control parameters, 
the z axis coincides with the channel axis and the gas moves in the positive directionofthe 
z axis. 

To formulate the boundary value problem on finite segment of the x axis for the system 
of Eqs.(l.l), we calculate the characteristic velocities, which are determined by the equa- 
tions 

[(u - c)" - a"] (u - c) = 0, uz = yp/p (' ) _.2 

These velocities are c(l) = U - a, c(?) = 2& + U, 0) = U. 

Since from the physical point of view only that part of space where the flow parameters 
p, U,p are positive and finite, are of interest, in conformity with (1.2) we can state that 

the system of Eqs.(l.l) are of the hyperbolic type when 0 (p, u,p (00. 
The characteristic velocities cc"), CC% are always positive in the indicated above varia- 

tion region of variables Z,U, p, p,while c (I)= u-a may be either positive, or negative, or 
change its sign at some points ZE[O, 11. Subsequently we shall assume the existence at least 
of one inner point z~(0, 1) where c(l) changes it sign, but not excluding the possibility of 
other such points coincident with the ends of segment [O,ll. 

The behavior of characteristic velocity c(l) for 0 4s < 1 defines the flow mode. The 

flow over the whole channel length is supersonic when c(') >O, subsonic when c(1) (0. and 

transonic when c(l) changes its sign inside the channel. In the latter case c(l) can change 

its sign either in a continuous manner, or discontinuously in a shock wave. 
Among various types of transonic flows we shall consider steady flows with continuous 

transition through the speed of sound. Steady flows are defined by a system of ordinary dif- 
ferential equations which are obtained from (1.1) with time derivatives equal zero. Thepoint 
of transition through the speed of sound corresponds to a singular point of steady equations. 
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As shown by the investigation of an arbitrary hyperbolic system of equations, whose un- 
knownfunctionsdepend on two arguments, viz. coordinate and time /1,2/, we can separate three 

types of stable steady solutions of system (1.1) with a continuous transition through the 
speed of sound. We shall consider, as in /1,2/, the transonic solution as stable for which 
the presence of point of transition through the speed of sound does not lead to the develop- 
ment of instability. 

Solutions with transition through the speed of sound from supersonic to subsonic veloc- 
ity (from c(l)>0 to c(l) (0) are considered stable, if the singular point of steady equa- 
tions (1.1) is a node with negative proper directions, while solutions with transition from 
subsonic to supersonic velocity (from c(1) < 0 to c(l) > 0) is considered stable when the 
singular point is a saddle or a deformed saddle. In the latter case the derivatives of flow 

parameters with respect to x become infinite /1,2/. 
Under certain conditions obtained in /1,2/, solutions with transition through the speed 

of sound from C(')>O to c(~)<o at the singular point of the saddle type can also be stable, 
but they are not considered here. 

As shown in /1,2/, the system of equations of the hyperbolic type close to the singular 
point reduces to a single first order differential equation. The type of singular point of 
that equation and, consequently of the whole system, with time derivatives equal zero, is 
determined by two eigenvalues h,,h,. When the problem controlling functions are continuous, 
singular points of the node and saddle type may be generated, and when they are discontinuous, 
singularities of the deformed saddle may appear. 

For correctly stating the mixed problem for a system of Eqs.(l.ll and, consequently also, 
for the correct statement of the boundary value problem for the respective stationary system, 
it is necessary to know the type of the considered transonic flow. 

In the presence of singularity of the node type (h, <O,h, (0) it is necessary to specify 
inside the r segment three conditions at I = 0, since at that end c(1) > 0, c(2) > 0, c(S) > 0, 

and one condition at z = 1, since at that boundary c(1) < 0. 
In the presence of a singularity of the saddle type (h, > 0, h, (0) or of the deformed 

saddle type for solution with transition from c(1) (0 to c(l) > 0 it is necessary to spec- 
ify only two conditions at 5 = 0, since in that case with 2 = 0 only cc2) and c(S) are 
positive (c(l) is negative), and at s=l all three characteristic velocities are positive 
and, consequently, boundary conditions at z = 1 are not specified. 

Thus in the first case the steady system consisting of three first order differential 
equations is integrated with four boundary conditions, and in the second and third cases,with 
two. The possibility of selecting a solution that correspond to equations and boundary con- 
ditions is determined in the first case by that one-parameter set of integral curves passes 
through the singular point of the node type, and in the second and third cases the selection 
of solution is dependent on the supplementary condition of the integral curve passing through 
the singular point with the positive derivative dc(‘j/dx. 

The form of boundary conditions is detemlined by the statement of a particular problem, 
and must ensure the respective type of the considered transonic flow. 

2. Let us fomjulate the problem of selecting the control functions Y(Z), ~~(5) so that 
some integral characteristic 

*’ = ( @ (2, Yv Y’, Vkr p, u, p, . . .) dx 
0’ 

(2.1) 

reaches the maximum value, where miis a known function of its arguments. 
When solving the problem of optimization, it is necessary to take into account that the 

control function must satisfy certain limitations. 
We assume that the admissible control L+(X) and the derivative of the channel form Y'(x) 

are piecewise continuous functionsthatcan sufferafirstorderdiscontinuityatafinite numberof 
points of the segment of x,and functions y (x) and p (x), u (x), p (I) are continuous. 

Let the controls vr(x) and y'(x) satisfy the inequantities 

--k, d Y' 6 4. v,, 6 vk < v,, (2.2) 

the first of which is associated with the boundaries of quasi-one-dimensional approximation 
and the second with the technical possibilities of the controls themselves (the constants I,,, 
k, are positive). 

The solution of the optimization problem is carried out with the use of variable Lagrange 
multipliers. For this we compose the subsidiary functional 

=b 

I = h’ + j @IL + p&z t p&s) dx (2.3) 
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where pi (x) the variable Lagrange multipliers and the expressions L,, &,La are steady. 
Calculating the first variation 61 taking into account the appearance of point of can- 

trol discontinuity and the change of sign of c(') we obtain equations for the Lagrange muiti- 
pliers and the boundary conditions for their integration and, also, the necessary conditions 
of extremum for all control functions /4/. 

We draw the attention on that in optimizing a flow with singularity of the node type 
(X, (0, A, (0) I we obtain for the equations of the Lagrange multipliers two boundary condi- 

tions at 5 = 1, while in optimizing flows with singularity of the saddle type, or of deform- 
ed saddle type for the same equations we obtain three boundary conditions at .Z=I and one 
at x = 0. 

As shown in /4/, the solvability of the formulated boundary value problems follows from 
the investigation of the properties of the singular point of the system consisting of equa- 
tions of motion and of equations for the Lagrange multipliers. The singular point of such 
system proved to be a generalized saddle, at which there always is one and only one proper 
direction to which is tangent the one-parameter set of integral curves. In the first case the 
presence of this proper direction is due to the equations of motion, and in the second and 
third by the equations of the Lagrange multipliers. 

3. Recently, the method of establishment is applied effectively to the solution of 
problems of transonic flows. Here the method of establishment with respect to time is applied 
to solving the problems of optimizing the controls of flows with transition through the speed 
of sound. 

We write the unsteady equations for the Lagrange multlipliers that are conjugate of the 
unsteady system (1.1) 

(3.i) 

where the subscripts p,u, p denote the respective partial derivatives. 
The form of system of Eqs.(3.1) implies that its characteristic velocities are the same 

as of system (1.1). 
It can be ascertained that all characteristic velocities of the system composed of equa- 

tions (1.1) and (3.1) are double. This conclusion additionally clarifies the results of /4/, 
that generalizes the quantitative analysis carried out in /l/, in the case of system with 
double characteristic velocity which vanishes. 

In obtaining the steady solution of Eqs.(l.l) and (3.1) by the method of establishment, 
steady boundary conditions and some initial data are specified. The equations of motion are 
integrated in the direction of increasing time, and those for the Lagrange multipliers in 
the direction of decreasing time. 

Such procedure is dictated by the correct statement of the mixed problem /3/ formulated 
in Sects.1 and 3 for the hyperbolic systems of Eqs.ll.1) and (3.1). 

Let us elucidate this on an example. Let at the inlet cross section of the channel the 
flow be supersonic and at the outlet subsonic. Then, as already stated, for the equations of 
motion three conditions must be specified at z= 0. since at that end the three characteristic 

velocities are positive, and one condition at I = 1, sincehere the characteristic veloaity ,.il I 

is negative. Solution of such problem for system (1.1) with initial conditions u (0, 3). p i0. 2,. 

p (0, I) at t=0 can be obtained when t >U, 0 :_ I i 1. 
. 

In that case the boundary value problem for Lagrange multipliers yields two conditions 
at rc= 1 Because the characteristic velocities cc' and ,;@) of system (3.1) are positive at 

x=1, the mixed problem for the Lagrange multipliers must be solved when f<O, since only 

for such direction of time the information from the boundary *== 1 is transmitted with the 
characteristic velocities c(*' and ?) to the inside of segment (I<= <r. 

The case when the flow at the channel intake is subsonic and at the outlet supersonic 
can be analyzed similarly. 

Analysis /4/ shows that the character of singular points of system of Eqs.cl.1) and (3.1) 
for stable transonic flows enables the construction of solution for the Lagrange multipliers. 
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For solving the problem Of optimization we propose the following iteration process: spec- 

ified are the control functions $'(x),~;~"(z) and the initial distributions p"(0, 5), Q(O, I), 

P0 (09 5) that satisfy the specified boundary conditions, and Eqs.(l.l) are integrated by the 

method of establishment up to the emergence of a steady mode. Then the obtained steady dis- 
tributions of p(s),n(z),n(z) are used for calculating the coefficients in Eqs.(3.1) which are 
then integrated for some initial distribution of pt (0, z), h"(O, z), ~30 (0, z), also, satisfy- 
ing their boundary conditions for obtaining steady values Of Pi (5). 

The obtained distribution of p (z),u (x),p (x), pt (Z) are used for calculating the control 

parameters with the constraints (2.2), and the process is repeated with the new controls y'(x), 

ntCl(z). The initial distributions for p,u,p and later also for pi, the respective steady 
soiution obtained in the preceding step is taken. The indicated calculations are repeated 
until the values of control parameters in two successive iterations do not differ by more 
than s (s is the specified exactness). 

Such approach to the solution of the problem of transonic flows proved to bemoregeneral 
than the many other methods using the numerical integration of ordinary differential equa- 
tions with ranging over the deficient boundary conditions. 

Without going into the difficulties of constructing the algorithm using the method of 
solving boundary value problems for ordinary differential equations with singular points (e.g., 

/4/j, we only note that preliminary qualitative investigations of unsteady equationsofmotion 
it is necessary in any case, no matter by which method the equations are integrated, since 
the type of singular point determines the stability of the flow mode. It is not necessary 
to conduct in each case a qualitative analysis for the Lagrange multipliers, since the sing- 
ularity of these equations is defined in /4/ for all types of solutions with transition 
through zero of characteristic velocities. 

4. We adduce examples of optimization of specific transonic flows in channels. 
As the first example, let us consider the problem of optimization of parameters of an 

MHD-generator. A detailed statement and solution of the problem of optimization of MSD-gener- 
ator with respect to power for subsonic, supersonic and transonic flows withtransitionthrough 
the speed of sound in the shock wave are given in /5/. In /4/ is given the statement and the 
solution of that problem for flow with transition through the speed of sound in a singular 
point of the steady node type. Here, we present some supplementary results obtained by the 
method of establishment. 

The flow of a electro-conducting gas in a plane channel of MHD-generator at low magnetic 
Reynolds numbers is defined by the Eqs.Cl.1) under conditions 

(4.1) 

where o is the medium electrical conductivity, B is the external magnetic fieldintensity norm- 
alto the plane in which lies the x axis and the generatricesof the conductingchannelwalls, 
(r and -_'F arethepotentialoftheupperandlowerwall, respectively, and A is the parameter of 
the magnetohydrodynamic interaction. The equations are in dimensionless variables, as in 
/5/a and the parameters with small circle superscripts denote characteristic quantities. 

Assuming the flow to be supersonic at the inlet whose cross section is fixed,we specify 
parameters pO, uO,pO at Z= 0 from the consideration of flow at z<O which can be assumed 
known. In the open cycle work of the generator, the pressure p, of the medium into which 
the outflow takes place is specified. In conformity with /4,5/ that pressure must be such 
that the discharge occurs at the speed of sound, i.e. M,,= i (M is the Mach number). 

Thus for the system of Eqs.Cl.1) and (4.1) the boundary conditions are specified in the 
form 

P = PO, u = u0. p = p0 (2 = O), M, = 1 (z = Zb) (4.2) 

Functions y (z), C$ (t). B (I) are the controls of this function and his the channel length. 
Taking the maximum admissible channel length as a characteristic dimension 1' and the 

module of maximum admissible magnetic field intensity as B", we obtain the inequalities 

OfZ<Zb<i, ---IdB(z)<l, ~P~<v(z)<P)P, y(O)=1 (4.3) 

As shown by the qualitative investigation /6/, the flow in widening channel of the MHD- 
generator is realized with a transition through the speed of sound in a singularity of the 
node type with negative proper direction for values of parameter 1.56 A<m in the range of 
change B(z) and o(z) corresponding to (4.3). 

As the optimized characteristic we select the power taken off per unit of width of the 
generator 

=!, 

iv= dz 

0 

(4.4) 
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The necessary conditions of maximum Nwere obtained in /4,j/. It was shown in , 4, f3r 
transonic flow in MHD-generator, that the optimal form channel widens at the greatest possib_; 
angle from the inlet to the outlet cross section y(z)= k,r_tl. and the optimai distribution 
of the magnetic field intensity consists of a section of the limit extremum where B (Xi 5 I 
(close to cross section z = 0) and adjoining it the section of two-sided extremum, where 
E(z) falls from unity to some lower value at the channel outlet. The electrodes were assum- 

ed continuous throughout the channel, i.e. rp = ConSt , The gain in power due to optimization 
only of the magnetic field intensity was 8.3% for A = 2. The comparison was made with a 
channel of optimal form with magnetic field intensity E(z)=1 over the whole channellengcn. 

Here we consider a channel with ideally subdivided electrodes, and solve the problem us- 
ing the system of Eqs.(l.l) and (4.1) with boundary conditions (4.2) and the conjugate system 
(3.1) with boundary conditions obtained by the known methods of variational calculus. For the 
considered here problem we have 

1"1 = 0, &" + p3yp = 0 (5 = IJ 

It was assumed in calculations that h =2,0~l,y=V,,~, = 0.5, p. = :).IIYTcl. p. = il.649 which cor- 
responds to a Mach number M,= 1 at z = 0. The maximum admissible angle of slope of channel 
wall to the z axis is 200 which yields k,= 3.64 when i"ly"(O)= 10. 

The optimal distribution of q(x) is given by the formula 

BY 

[ 

CL% 
q=2p P- yt(Y--l)P’s, 1 

The optimal distribution of T(Z) in the absence of constraints on opr and 851 is re- 
presented in Fig.1, where the optimal distribution of B(z) is given with cp = ron:~ obtained 
in /4/. 

The distributionof power along the channel of the MHD-generator of optimal form y (2) =: 
3.642+-l is also shown in Fig.1 for the optimal distribution of I and B~I (line l), for 
the optimal E(s) and 'p= coast (line Z), and for B(Z)= i and 'p= const (line 3). These curves 
show that the gain in power due to optimization of q(z) is equal 33%, when compared with a 
generator with compact electrodes when BZf, and 21% when compared with a generator where 

B(z) is distributed in an optimal manner and the electrodes are compact. In channels with 
compact electrodes the value of * = coast was in each case optimal. Thus, for example, for 
line 3 the value cp= 1.2 was selected. 

1.5 
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Fig.1 Fig.2 

The substantial gain in power, when optimizing 'p(o) is due to the elimination of the 

section with energy supply to the gas near the cross section of the channel, which is indicat- 
ed by the curves of power in Fig-l. For optimal distributions of q(z) and B(z) the point of 
transition through the speed of sound was shifted along t toward the channel outlet cross 
section. The optimal channel length was the same as in /4/ and equal its maximum admissible 
value. 

Let us consider the variable problem of constructing an MHD-accelerator. Since in this 

case solutions in which gas is accelerated from low to possibly high velocities are of inter- 
est, we optimize from all modes of flow in the accelerator, the mode with transition through 

the speed of sound, in the singularity of the saddle type. The flow of conducting medium in 

a MHD-accelerator is defined by Eqs.(l.l) and (4.1). The boundary conditions at the channel 

intake are specified by the relations 
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which assume the absence of losses in the flow at z <o. In the channel outlet cross section 

a supersonic flow obtains, hence no conditions at z=zb are specified. 
We select as the integral characteristic, that is to be optimized, the velocity LL~ at 

the channel outlet cross section. The control parameters in this problem are Y (z), B (z). cp (2) 
and zb satisfy the inequality (4.3). The qualitative investigation of the steady Eqs.(l.l) 

and (4.1) had shown that in the mode energy supply to the gas a singularity of the saddle type 
occurs. 

In this case the boundary conditions (one at z= 0 and three at z=zY) for integration 

of Eqs.(3.1) for the Lagrange multipliers are of the form 

PPl+?Ws = 0 (2 = 0) 
Pi = 0, 1 i UP0 + YPP, = 0, Pe+PWs = 0 h= 4 

We assume that the electrodes are compact, i.e. ‘p= coast throughout the channel. Form- 
ulas for the optimal distribution of magnetic field intensity B(z) and the areas of the cross 

section of the plane channel y(z) on sections of the bilateral extremum at ozi in this 

problem are of the form 

B=2uy l- “i (Y - 1) PWS 
P%- (Y- 1) FW3 I 

(4.5) 

ay* + by + c = 0 

= = ypuB% (p, (P - #) + klW I(? - i) P + PU21) 
b = cpB (pz [yp - 2 (y - i) pu2] + 2~8 (y - 1) pu h’p i (V - 1) PA) 

c = (Y - 1) p'p* (Ps IYP - (Y - 2) PUZl - W) 

(4.6) 

Flows with 'pI= 1.5,~~ V,,O.- i,k, = 3, Y(O)= 1 were calculated as examples: 
1) in the channel of the accelerator of optimal form at COnStant magnetic field intens- 

ity B (z) z 1; 
2) in a channel of constant area of transverse cross SeCtiOn yz 1 and optimal distribu- 

tion of magnetic field intensity, 
3) in a channel of optimal form and optimal distribution of the magnetic field. 
The results of calculations for A= 1 are shown in Fig.2. In all considered cases the 

optimal values were lb- 1,cp = (p2. 
Calculations had shown that a plane channel of optimal form must be narrowing, and the 

maximum value y'= -3 is reached on the initial section to which is adjoined the section 
of bilateral extremum (4.6), where the narrowing of the channel is more smooth. From the 
two roots of Eq.(4.1) the positive one was selected. 

In Fig.2 the solid line represents the optimal channel form y(r) when B ~1. 
The velocity of gas in the outlet cross section of a channel of optimal form is 2.ltimes 

larger than in a channel of constant cross section, and 1.5 times larger than in a channel 
that narrows in conformity with the linear law (the dash-dot line in Fig.2). The area of 
cross section of a straight channel was taken equal to the area of intake cross section of 
the optimal channel, and the area of intake and outlet cross eections of a narrowing channel 
were specified equal to respective areas of the optimal channel. The presented data were 
obtained by comparing the velocities u at z= 1. The distribution of U(Z) are shown in Fig.2, 
where the dash lines relate to the medium velocity in a channel of constant cross section 
Ysl (curve I) and in a channel of optimal form (curve 2), and the dash-dot line shows the 
velocity in a linearly narrowing channel. 

As parameter A is increased, the gain of velocity ut increases due to the optimization 
of the channel form. 

The results of calculation of optimal distribution of the magnetic field are also shown 
in Fig.2. 

The optimal distribution of the megnetic field intensity, as in the optimization of 
MHD-generator consists of two sections, one with maximum admissible intensity B=l atthe 
beginning of the channel, and is followed by a section of the bilateral extremum (4.5). 

In Fig. 2 the dash line denotes the optimal distribution B(z) in a channel of constant 
cross section Y= 1 and the solid line shows it in the channel of optimal form with simultan- 
eous optimization of B(z) and Y (2). The comparison of these two curves shows that the length 
of the bilaterial extremum section in the channel of constant cross section is greater than 
in a channel of optimal form. The gain in velocity due to optimization of B(r)is 16.3% when 
A=l,Y(z)~~i. 
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The distribution of U(Z) in the channel of a _MHD-accelerator when 5 (I) is optimized are 
shown in Fig.2 by solid lines, viz.1 in a channel of constant cross section and 3 in a 
channel of optimal form. The optimal distribution of Y(S) with simultaneous optimization of 
y(z) and B(z) virtually does not differ when A = 1 'from the curve for y(z) shown in Fig.2. 

With Simultaneous optimization of Y(Z) and B(I) the gain in velocity is 116% when compared 
with the accelerator in which i?=1, yrl. 

These examples show that the optimal form of the MHD-accelerator when A is close to 
unity, yields a substantially greater gain of the medium velocity in the outlet cross section, 
than the optimization of the distribution of the magnetic field intensity. In an optimal 
channel the point of transition through the speed of sound shifts toward the outlet cross 
section. 

As parameter A is increased, the gain in velocity due to optimization of B(x) increases 
which is confirmed by data obtained for strong electromagnetic fields /7/. 

As the third example we consider the problemof optimization of a constant current plas- 
matron with a lengthwise blown arc. The statement and solution of the problem of optimiza- 
tion of such plasmatron for subsonic flows are given in /8/, while in /9/ is presented a 
qualitative investigation of respective steady equations. It is shown in /9/ that a stable 
transition through the speed of sound form subsonic to supersonic velocity occurs in widen- 
ing part of a channel and in a singular point of the saddle type. 

In many gasdynamic experiments the establishment is required of a plasmatron of such 
construction in which the gas velocity at the outlet cross section of the channel exceeds 
the speed of sound. Here, we consider the problem of constructing an axisymmetric plasmatron 
channel of optimal form for a given Mach number at the outlet. 

The flow in such channel is defined by the system of Eqs.cl.1) under the conditions 

where I= const is the arc current strength r is the radius of the axisymmetric channel, 1 
is the dimensionless number, and the small circle superscript denotes dimensional quantities. 

For integrating the system of Eqs.cl.1) and (4.7) we specify the gas flow rate pug= m, 
and its enthalpy h = h, at z=O. 

The controlling parameters of the system are the shape of the channel ~(2) anditslength 
As shown in /0/, the optimal value h, is equal to the least possible value, which we take 
as equal unity in dimensionless form. 

As the optimization characteristic we select the power of the plasmatron 

The boundary conditions for the system of Eqs.(3.1) are in this case 

Pa (P"* -P) -I- P3 (u - 1) pup = 0 (1 = 0) 
~*(Pu’+P)+Cls(Y+1)pup=O, M=Mb 

C”lf+~ + kP + PJPUP = 0 (z = 20) 

CalCUlatiOnS were carried out for y = 6/s; kl,*= 3, o = 0.35p/y, h, = 1, m0 = 0.11353 with allowance 
for supplementary constraint /0/ on the radius of the channel cross section of the form 
r(I) > rl, PI = 0.4. 

It appears that the optimal channel form consists of three sections, viz. the initial 
narrowing conical, whose angle of narrowing is equal to the maximum admissible, a central 

cylindrical one with the area of cross section is r= rl, and the finite section of widening 
conically, the angle of widening is equal to the maximum admissible. 

Transition through the speed of sound occurs in the channel cross section where the 

final conical section adjoins the cylindrical one, the singular point that defines the flow 
in such channel is a deformed saddle. 

The comparison of results of calculationof flow in an optimal channel, or channels first 
of which consists of two conical sections: initial narrowing one and a widening one adjoin- 

ing it, and the second which has the initial cylindrical section followed by a widening con- 
ical section,has shown that optimization of the channel fcrm only yields in this case con- 
siderable gain in power. 

For instance, with the dimensionless similarity criterion q=5 the power in the op- 

timal channel is by 16% higher than in the first, and by 82% higher than in the second for 

the same channel lengths, current strength in the arcs, the angles of narrowing and widening, 

which in all cases were selected equal to maximum admissible, and the area of intake cross 
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sections and Mach number at the outlet (&lb= 1.85). 
Results of these calculations are shown in Fig.3, where the channel profiles and the 

corresponding to them curves of power distribution are denoted by numerals 1,2,3. 
The calculations were carried out by the method of 

establishment in time for system (1.1) using the scheme 

3 proposed in /lo/, and for system (3.1) by the three-point 

2 
difference scheme. 

1 
Comparison of solutions obtained using the method of 

establishment and by integration of ordinary differential 
0 

il.5 1 

'N 
I 3 ? 

2 

m 

equations by the Runge-Kutta method and ranging of the 
deficient parameters using the Newton method had shown a 
good agreement of results. 

The presented examples have, thus, demonstrated that 
the proposed here method of solving problems of optimal 

f selection of parameters controlling the transonic flows is 

t applicable for any steady flow with transition through the 
0 - 

0.5 I speed of sound. We would also point out that thesemethods 
may be used for optimizing flows with shock waves and can 

- 
Fig.2 be extended over equation of a more general form that en- 

able the taking into account the phenomenon of relaxation. 
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